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Lakatos ef al. [Phys. Rev. E 71, 011103 (2005)] have studied a totally asymmetric exclusion process that
contains periodically varying movement rates. They have presented a cluster mean-field theory for the prob-
lem. We show that their cluster mean-field theory leads to redundant equations. We present a mean-field

analysis in which there is no redundant equation.
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Recently, Lakatos et al. used the cluster mean field to
analyze a totally asymmetric exclusion process (TASEP)
with periodic structure [1]. In the model of TASEP with pe-
riodic structure, the TASEP is generalized to include two
internal hopping rates, p; and p,. We consider periodic
boundary conditions, and suppose there are N particles in the
lattice with 2L sites. The density is therefore o=N/(2L). In
each time step, a particle is chosen randomly. If it is on an
even (odd) site, then it hops forward by one site with prob-
ability p; (p,) provided the target site is empty.

The model corresponds to 7=2 in Ref. [1], where T is the
period of the periodic structure. In Ref. [1], Lakatos et al.
consider the pair probability P(x;,x;.;) [i.e., the probability
of finding a p; site with occupancy x; (x;=0 if site i is empty,
x;=1 if site i is occupied), followed by a p, site with occu-
pancy x;,;], and the pair probability Q(x;,x;,,) (i.e., the prob-
ability of finding a p, site with occupancy x; followed by a p,;
site with occupancy x;,;). They believe “the time evolution
of the occupancy state of any two adjacent sites will depend
on the two sites themselves along with the pair of sites im-
mediately to the left or the right of the two site group.” Thus,
they write out the master equation for the two-site probabil-
ity P(0,0) as follows:

dP(0,0)
dt

=_p2[P(O913030) +P(191’0a0)]

+ p,[P(0,1,0,0) + P(0,1,0,1)]. (1)

They assume that each pair of (p;,p,) sites behaves as a
statistically independent unit and they decompose the
probabilities into  products of pair probabilities,
P(X;, Xi41 5 X142 %143) = P(x;, X1 ) P(Xj42,X143). As a result, Eq.
(1) is reformulated into

dP(0,0)
dt

=pa[ P(0,1)* = P(1,1)P(0,0)]. (2)

In the steady state, upd?’—()l:O, thus
po[P(0,1)* = P(1,1)P(0,0)] = 0. (3)

Let o, and o, denote the densities at sites p; and p,. It is
clear that

o, =P(1,0) + P(1,1), 4)
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o,=P(0,1)+ P(1,1). (5)
For Q(x;,x;), one has the counterparts of Egs. (3)-(5),
pi[0(0,1) - 0(1,1)0(0,0)] =0, (6)
U]:Q(O’l)+Q(l’l)’ (7)
o, =0(1,0) + O(1,1). (®)
Moreover, the current continuity condition gives
p1P(1,0) = p,0(1,0). )

Under the periodic boundary condition, the sum of the den-
sities o and o, should be twice the system density o, i.e.,

o +0,=20. (10)
Furthermore, by definition,

P(0,0) + P(0,1) + P(1,0) + P(1,1) =1, (11)

0(0,0) + 0(0,1) + O(1,0) + O(1,1) = 1. (12)

Now there are ten variables P(0,0), P(0,1), P(1,0),
P(1,1), 0(0,0), 0(0,1), O(1,0), O(1,1), oy, o, and ten
equations (3)—(12). Thus, Egs. (3)—(12) could be solved.

Nevertheless, following the mean-field analysis of Ref.
[1], we can write out the master equation for other probabili-
ties,

dP(1,0)
dt

=—p,P(1,0) + p,[P(0,1)P(0,0) + P(1,1)P(0,0)
+ P(1,1)P(0,0) + P(1,1)P(0,1)] =0, (13)

dpP(0,1)

” =p,P(1,0) - p,[P(0,1)P(0,0) + P(0,1)P(0,1)

+ P(0,1)P(0,1) + P(1,1)P(0,1)] =0, (14)

dP(1,1)
dt

=p,[P(0,1)P(0,1) + P(1,1)P(0,1)]

— pa[P(1,1)P(0,0) + P(1,1)P(0,1)]=0.
(15)

Equation (15) is identical to Eq. (3) and is not an inde-
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pendent equation. Moreover, Eq. (14) is also not an indepen-
dent equation because it can be derived simply by substitut-
ing Eq. (3) into Eq. (13). However, it can be easily verified
that Eq. (13) is a redundant equation because the solution to
Eqgs. (3)—(12) cannot meet the equation. Similarly, the coun-
terpart of Eq. (13),

dQ(1,0)
dt

=-p,0(1,0) + p,[2(0,1)0(0,0) + O(1,1)0(0,0)
+0(1,1)0(0,0) + 2(1,1)Q(0,1)] =0, (16)

is also a redundant equation.

We argue that this problem is due to the assumption that
Px;,Xig15 %1425 X143) = P(x;, X341 )P (X112, %;43) in Ref. [1]. Next
we present a mean-field analysis in which there is no redun-
dant equation. Note that an implicit difference between
P(X;, X415 X142, %143) = P(X;, X4 ) P(Xi10,X;43)  and  Eq.  (18)
shown below is in how to express the probability of three
consecutive sites. In the former case,

P(xiuXip15Xi42) = P(O,X3, X101, X140) + P(Lx3, X015 Xi4)
=[P(1,x;) + P(0,x)]P(X;s1,Xi12)
= P(x) P(xj1,Xi40) -
In the latter case,

H(xp, X 1,X042) = H(Lx, X1 X542) + H(0,2,X541,%4)
=H(1 |£)H(xi’xi+l)H()ﬂ|xi+2)
+ H(O|x) H(x;, X1 )H (X1 |%142)
= H(xi>xi+1)H()£|xi+2)
= H(x;,x; ) H(xj11,X142)[[H (%11, 0)
+H(xip,1)] = Hxx ) H(Xi1,%000)/H (X4 )
# H(x)H(X;41,X142) -

We denote H(x;_,x;,X;.1,X;s2) as the probability of find-
ing a p, site with occupancy x;_; followed by a p, site with
occupancy x;, then followed by a p, site with occupancy x;, 1,
then followed by a p, site with occupancy x;,,. Based on
this, the master equation for the probability P(0,0) is

dP(0,0
APOD 11,0000+ H(1.0.0.1)]
+p,[H(1,0,1,0) + H(0,0,1,0)]. (17)

In the mean-field theory, H(x;_;,X;,X;41,Xi42) 1S approxi-
mated by a product of overlapping two-site probabilities and
conditional probabilities (see, e.g., Ref. [2]), i.e.,

H 150 X1, X12) = HOv X)) H 0, 6040 ) H (X [X040)
(18)

Here

H(x;_;,x;)

Heal) = o o)

PHYSICAL REVIEW E 78, 013101 (2008)

H()C,-+1,)C,~+2)
H(x;11,0) + H(x;1,1)

H(Xp|xi10) =

From our definition of H, we know
H('xi—la'xi) = Q('xi—l’x[)’H(xi’xi+l)
= P(x; X 1), H(X 415 X042) = Q(Xip1,X140) . (19)
Therefore,
H(xi 1,20 X1 Xi40) = Q0 1) P (63, %111 O (X1 [ 6240) -
(20)
Substituting Eq. (20) into Eq. (17), we have

dP(0,0)
dt

= - p2[0(1]0)P(0,0)0(0[0) + Q(1]0)P(0,0)2(0|1)]

+pa[0(110)P(0,1)Q(1]0) + 0(0[0) P(0,1)Q(1]0)]
=—p[O(1]0)P(0,0)]+ p,[P(0,1)Q(1|0)]
0(1,0)P(0,0) P(0,1)0(1,0)
T P0(10)+000.0) T720(1,0) + Q(1L1)
Substituting Egs. (7), (8), and (12) into Eq. (21), we have

(21)

dP(0,0) Q(1,0)P(0,0) P(0,1)Q(1,0)
==p + D2 . (22)
dt 1-o0 oy
Therefore, in the steady state %@:0, we have
P(0,0) P(0,1
0.0)_ PO.1) o3
1-0 o)
Similarly, we have
dP(1,0
% =-p,[H(1,1,0,0) + H(1,1,0,1)
+H(0,1,0,0) + H(0,1,0,1)]
+ p,[H(1,0,0,0) + H(1,0,0,1)
+H(0,1,1,0) + H(1,1,1,0)]
Q(1,0)P(0,0)
=—P1P(1,0)+P2[—
1- (o]
P(1,1)0(1,0
, PO )}’ (24)
%)
dP(0,1)

ar =pi[H(1,1,0,0) + H(1,1,0,1)

+ H(0,1,0,0) + H(0,1,0,1)]
_pZ[H(1’05190) +H(O9O’la0)
+ H(1,0,1,0) + H(1,0,1,1)]

P(0,1)Q(1,0) Q(1,0)P(0,1)
(o)) - 1 — 0

>

=pP(1,0) - p,

(25)
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dP(1,1)
dt

=p2[H(190,1’0) +H(1’071’1)]

—po[H(1,1,1,0) + H(0,1,1,0)]
=pa[0(110)P(0.1) - P(1,1)Q(1]0)]
Q(1,0)P(0,1)  P(1,1)0(1,0)

1—0'1 (o)

=D (26)

Substituting Egs. (4), (5), (9), and (10) into Egs. (24) and
(25), it can be seen that the right-hand side of Eqgs. (24) and
(25) is zero. Therefore, Egs. (24) and (25) are not indepen-
dent equations. From Egs. (4), (5), (11), and (23), P(0,1) and
P(1,1) can be solved,

Hangfzmz, (27)

0y — 0

P(1,1)=L. (28)
1+0'2—0'1

Substituting Egs. (27) and (28) into Eq. (26), it is found that
the right-hand side of Eq. (26) is zero. Therefore, Eq. (26) is
also not an independent equation.

PHYSICAL REVIEW E 78, 013101 (2008)

For Q(x;,x;), one has the counterpart of Eq. (23),

0(0.0) _0(0.1) 09)
1—0'2 g

Therefore, in this mean-field method, we have ten variables
P(0,0), P(0,1), P(1,0), P(1,1), 0(0,0), 0(0,1), O(1,0),
Q(1,1), oy, 0, and ten independent equations (4), (5), (7)—
(12), (23), and (29). The equations can be solved, and sur-
prisingly, the solution is the same as that presented in Ref.
[1] without using Egs. (13) and (16). This implies that the
problem existing in the mean-field method presented in Ref.
[1] might be resolved by discarding redundant equations.
However, this introduces additional complexity into the
method because one needs to judge which equations are re-
dundant.
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